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ABSTRACT

Designing a dosage regimen for a pharmacokinetic/pharmacodynamic system
involves defining: i) a patient-dependent model, which includes structure, parame-
ter, and measurement uncertainties; ii) the choice of controls, which can include dose
amounts, dose times and/or sampling times; and iii} an appropriate performance
index to evaluate achievement of a clinically chosen therapeutic goal. The control
problem then is to choose the dosage regimen that optimizes the expected value of
the performance index. This problem fits within the framework of stochastic control
theory. Examples are given to illustrate the variety of this class of problems, in-
cluding: optimal dose regimens for target level and target window cost; and optimal
sampling schedules for maximal information. By varying the class of admissible con-
trols, different strategies are generated. Control strategies to be discussed include:
open loop, open loop feedback, separation principle, and iteration in policy space.
Monte Carlo simulation studies of a terminal cost type problem are presented.

INTRODUCTION

Designing a dosage regimen for a pharmacokinetic/pharmacodynamic (PK/PD)
system involves defining: -

¢ a patient-dependent PK/PD model, which includes structure, parameter,
and measurement uncertainties;

¢ the choice of “controls”, which can include dose amounts, dose times
and/or sampling times; and

e an appropriate performance index to evaluate achievement of a clinically
chosen therapeutic goal.

The control problem then is to choose the dosage regimen that optimizes the
expected value of the performance index. This problem fits within the framework of
“stochastic” control theory, i.e., control in the presence of uncertainty.

Examples are given toillustrate the variety of this class of problems in the PK/PD
setting. Included will be: optimal dose regimens for target level and target window
cost; and optimal sampling schedules for maximal information.



By varying the class of admissible controls, different strategies are generated.
Control strategies to be discussed include: open loop, open loop feedback, separation
principle and iteration in policy space. Monte Carlo simulation studies of a terminal
cost type problem are presented.

STOCHASTIC CONTROL FORMALISM

In this section we define the various ingredients which make up a stochastic
control problem.

State Equations

The time history of a drug concentration in a traditional PK model is typically
described by a system of deterministic ordinary differential equations. When “noise”
is added to this model the system of differential equations becomes “stochastic”.
Since stochastic differential equations are mathematically quite sophisticated, it is
desirable to seek a simpler formulation. The possibility of such a simplification
comes from the fact that dose inputs and infusion rates are changed only at discrete
time points (as opposed to continuously). In thelinear case, this leads to an equivalent
linear system of “discrete time” stochastic equations (as illustrated below). In the
nonlinear case the appropriate model is given by a discrete time “Markov process”
[1]. For purposes of this exposition, we take the middle ground and assume that
the PK/PD model can be described by a nonlinear system of discrete time stochastic
equations as follows:

Tn4l =fn(xmunawm¢)) n:O’l,__-’Af (1)

where at “stage” n, z, is the “state” vector of the system, u, is the external “control”
vector, w, is the “process noise” vector, and [, is a known vector function. Further,
¢ is an unknown time invariant parameter vector.

In the PK/PD setting, the state z, typically corresponds to amounts and con-
centrations of drug in various compartments and/or to various drug effects. The
control u, typically corresponds to the drug amounts and/or infusion rates of one
or more drugs into various compartments; additionally, the control u, could also
include various design entities such as dose times and sample times. The parameter
vector ¢ typically corresponds to various PK entities such as rate constants, distribu-
tion volumes, clearances, and/or to various PD entities such as Cso and Ev,.. The
process noise vector w, typically corresponds to various errors made in dose amount,
dose timing and model mispecification. Finally, the stage n typically corresponds to
a dose time or infusion time or sample time.

Measurement Equations
The measurement model is also described by discrete time stochastic equations.

These equations can be written as :

Yn = ho(Zn, Un, Ua, @), n=12,...,N (2)

where at stage n, y, is the “measurement” vector ; v, is the corresponding “measure-
ment noise” vector, and #, is a known vector function.



In the PK/PD setting, the measurement y,, typically corresponds to concentra-
tions of drug in serum or amounts of drug in urine but could also be measured
drug effects; the measurement noise v, typically corresponds to assay or measure-
ment device noise but could also correspond to the errors in recording the time of
observations.

Prior Distributions

In the model of Egs. (1) and (2), the vectors xg, w,, v,, and ¢ are the basic random
variables; and the prior probability density functions:

p(zo | ), P(wn | Tnytn, @),  P(vn | Tn, @), p(9) (3)

are assumed known. All the other random vectors z,,u,, and z, are functions of
g, Wy, v, and ¢.

The determination of these prior distributions is an important ingredient in the
stochastic control formulation. For the measurement noise, the prior distribution
of v, (given z, and ¢) comes from “calibrating” the measurement devices. For
the PK/PD parameters, the prior distribution of ¢ comes from analyzing previous
studies. This latter problem is called “Population Analysis” and is the subject of
much interest in PK/PD applications. (See [2, 3] for survey articles and the chapter
by Mentre and Mallet in this volume.) The initial state vector z¢ is quite often known
exactly (e.g., zo = 0). Otherwise the prior distribution of ryp must be determined
from “prior” events. On the other hand, the process noise term w, is a relatively
new addition to PK/PD problems. The determination of its prior distribution (given
Zn, U and ¢) is, for all practical purposes an essentially unexplored problem. (See [4,
5] and the chapter by D’ Argenio in this volume.)

Admissible Controls

A realizable control u, must be nonanticipatory. This means that u, can only
depend on present and past data. More precisely:

u, is a function of the information I, = (y1,..., ¥n; U0, - - - » Un—-1)- (4)

For our PK/PD applications, the components of u, will be constrained (doses
cannot be negative or arbitrarily large, dose times must be sequential, etc.). Further,
it may also be necessary to constrain certain components of the state z, (serum
levels should not be too large, platelet counts should not be too small). Since z,
is random, these constraints will only be required to hold in a probabilistic sense.
Such constraints also (implicitly) imply constraints on the controls (ug, u1,...,u,).
All these constraints will be collected under the assumption:

un belongs to some set I/, which may depend on (ug, u1, ..., ua-1). ()
A control policy U = (uo,uy,...,un) is called admissible, if U and the resulting X' =
(z0,1,...,zNn41) satisfy Egs. (1)-(5). The control problem then is to choose the

admissible control policy U to maximize some “performance index” or minimize
some “cost function”.



Control Criteria

For example it may be required to design a regimen to maximize the probability
that certain drug levels and/or effects belong to some therapeutic window. Here an
appropriate performance index would be of the form:

J(U) = % a, Prob{ga(zns) € Sn} (6)

n=0

where ga(z) is a given function of z, and S, is a given set (the therapeutic window).
In this case U would be chosen to maximize J(U).

Similarly, it may required to design a regimen to minimize the error between
certain drug levels effects and some desired response. Here an appropriate cost
function would be of the form:

N
JU) = E{Y anlll Znt1 = Lnst P 47 [ ua 1]} )

n=0
where L, is the desired response at stage n, {| - || is some vector “norm”, and where

a» and 4, are given nonnegative constants reflecting the relative importance of the
corresponding terms (including, for example v, = 0). In this case U would be chosen
to minimize J(U).

Finally, to illustrate an example that is not normally considered in the context
of stochastic control, it may be required to design a sampling schedule to maximize
some index of “information”. Here an appropriate performance index could be of
the form:

J(U) = E {det [M(¢,U)]} (&

where
M(8,U) = E {(3logp(Y | 4)/09)(3logn(Y | 6)/82)" | ¢} (9)
is the Fisher information matrix and where ¥ = (y1,%2,...,yn~). In this case U would

be chosen to maximize J(U).

These three examples can be put into the following form: Some criterion function
C = C(U, X, ¢) is given and the expected value of C is to be optimized. To be specific,
we will suppose that E£{C} is to be minimized. (For maximization problems, just
replace C by —C.)

Further, for technical reasons, it will be assumed that C{X,U, ¢) is of the form:

N

C(U$ Xa ¢) = Zgn(z-nni—hun, ¢) (10)

n=0

where g, is the “cost” at stage n. (It is clear that the criterion functions in Egs. (6),(7)
are in the form of Eq. (10). To put the criterion function in Eq. (9) into this form
requires “additional” state variables. This is illustrated in Example 2.)
The stochastic control problem can now be stated precisely as:
Find the admissible policy U* = (u, u{,. .., ux) which minimizes

J(U) = E{C(U, X)) | (11)

over all admissible U.



CONTROL POLICIES

The stochastic control problem as stated above is extremely general. 1t can be
made to reflect many of the decisions made in a clinical situation. Unfortunately,
the optimal control U cannot be implemented except for the most trivial cases. The
reason for this is outside the scope of this paper, but it essentially goes under the name
of “The Curse of Dimensionality”. In this section we, therefore, discuss various types
of suboptimal control policies which can be implemented. We restrict our attention
to those policies which have appeared in PK/PD settings.

Open Loop

In the open loop policy, the controller ignores all measurement data and depends
only on the prior “information” Iy = {p(zo | ¢), p(wn | zo,¢), p(¢)}. The optimal

open loop (OL) control U%L = (u§L,...,ufE) minimizes the expression

N
£{ S atein,un) o) 12
=0
with respect to (ug, u1, ..., uy). (For notational simplicity, in Eq. (12) and throughout

this section, we assume that g,(Tns1, Un, $) = 00, if u, & U, so that the constraints of
Eq. (5) can be suppressed.)

Open Loop Feedback

In the open loop feedback policy, the controller at stage n acknowledges that the
information I, is available, but assumes that no measurements will be taken in the

future. The optimal open loop feedback (OLF) control UL = (u§*F, ... uftF)is
such that, at each stage n, u2LF minimizes the expression
N
E{gn(xn-i-],una d’) + u E—l}n‘}‘N Z gi(mi+13 U§,¢) | ]n} (13)
R

with respect to u,.

In Egs. (12) and (13), the expression E{C | I.} denotes the expectation of C
conditioned on the information /,. Note that the optimal OLF control is just the
optimal OL control starting at stage n with “prior” information /,. The fact that
measurements can be used to advantage is reflected by the result [6]:

J(UOLF) S J(UOL)

Separation Principle

In the separation principle policy, the controller applies at each stage the determin-
istic control that would be applied if all random terms were fixed at their expected
values. The optimal separation principle (SP) control US? = (u3?,...,u3’) is such
that, at each stage n, ¥ minimizes the deterministic expression:

n

- N -~
In(Tn1,Un, $) + min [Z g;(r;+1,u;,¢)]

i et
n+l N i=nt1



with respect to u,, where
Titl1 = fi(mia U,’,O, &)a I = inv i = yeney N (14)

In Eq. (14) it is assumed that E{w;} = 0. Further, Z, and ¢ are some eslimates of z,
and ¢ based on the information 7,,.

The separation principle is so named as the resulting controller “separates” the
problem of estimation and control. The popularity of the §P controller comes from
its ease of computation and from the fact that the optimal 5P controller is actually
optimal with respect to all admissible controels in the linear, quadratic, Gaussian case
(LQG). In the LQG case: the state and measurement equations are linear; the cost
function is quadratic; all noise terms are independent Gaussian; there is no unknown
parameter vector ¢; and z, = E{z, | I,}. Unfortunately these conditions rarely hold
in PK/PD applications. And in general:

J(UST) £ J(U°)

Iteration in Policy Space

The optimal control policy U* = (uj,uj,...,uy) defined in Eq. (11) satisfies an
important recursion relationship. At each stage n, the control ] minimizes the
expression

, N
E{gn(Tni1,un, @) + Z gi(ziv1, ui (1), ¢) | In} (15)

t=n+1

with respect to u,. In Eq. (15), the dependence of u; on I; is explicitly shown to
indicate the way that u] depends on u,, for: = n +1,..., N. Equation (15) leads to
Bellman’s method of Stochastic Dynamic Programming. (This was one of the earliest
and most important results in stochastic control theory [6, 7].)

The major drawback of using Eq. (15) for computational purposes is that it
must be solved “backwards in time”, since otherwise u}, would depend on the future
controls (u},,,...,u}). This problemled Bayard [8, 9] to consider analogous methods
which could besolved "forwards in time". A brief description of Bayard’s approach is
as follows: Let U° = (uo, ..., un) be any admissible control policy (called the nominal
policy) . Then an iteration in policy space (I PS), with respect to U°, is the control policy
UTPS = (ufPS,.. ., ull5) such that, at each stage n, u/FS minimizes the expression

]

E{gn($n+11un1¢) + Z gi(zf+1,#i(1i)s¢) I ]ﬂ} (16)
1i=n+1

with respect to u,. It can be shown that U’"S improves on U°, i.e.,:
J(UIPS) S J(UO)

(Note the similarity between Eq. (15) and Eq. (16). Also note that calculating U#*
from Eq. (16) is, in fact, simpler than calculating U°LF from Eq. (13).)

This iteration process can be continued. The control policy U/"’S is admissible
and can, therefore, be substituted for the original nominal policy. The resulting
iteration on the policy U*F%, now denoted by U2-!PS, will, therefore, satisfy



J(UZ—IPS) < J(UIPS).

A remarkable result of Bayard [8] is that if this process is continued for (at most) N
iterations, then the optimal control U* of Eq. (11) is obtained, i.e.,

UN—IPS =U*

However even one iteration in policy space can dramatically improve control per-
formance. This is illustrated in the simulation study presented below (Example
1).

Active vs. Passive Learning

An important feature of the optimal control policy U* is how it “learns” about
the unknown parameters and states. In contrast to the OL, OL[", and SP controllers
which learn only “passively”, the optimal policy learns “actively” by probing the
system. Probing comes from the anticipation that future measurements will be
made, so that “mistakes” can be corrected {10]. In this sense, the optimal policy does
experimental design “on line”.

It is somewhat surprising that even one iteration in policy space on a “passive”
nominal can generate a “active” controller. For example, it is shown in [11] that if
the nominal policy is taken as U9LF then the resulting U'"° has this behavior. Itis
observed in the simulation study presented below (Example 1), that the same is true
if the nominal policy is U5%.

Previous PK/PD Applications

There have been only a few PK/PD applications of stochastic control theory to
dynamical systems with process noise. In [12], an SP controller was simulated for
a PK/PD problem in anticoagulant therapy; in [13] an OL controller was simulated
for a PK problem in theophylline therapy; and in [14], an IPS type controller was
simulated for a PK “terminal cost” problem.

Deterministic State Equations

In traditional PK/PD problems, the state Eq. (1) is deterministic (for given ¢).
That is, the process noise is assumed to be zero (w, = 0) and the initial state zo is
known exactly, e.g., zo = 0. Now the cost function, Eq. (11}, is of the form:

J) = [ CU, X, e)n(@)ds

In this case the special policies OL, OLF, SP, and IPS above are all considerably
simpler. Most previous PK/PD applications of stochastic control have been in this
setting.

One of the earliest applications of “sophisticated” stochastic control theory was
due to Gaillot, Steimer, Mallet, Thebault, and Bieder in 1979 where an optimal OL
controller was utilized for-lithium therapy [15] . In Richter and Reinhardt [16], a
similar OL controller was utilized for theophylline therapy. More recently, Mallet, ¢t
al. [17} combined sophisticated population analysis with an optimal OL controller
in designing dosage regimens for gentamicin therapy.



Simulated PK applications of optimal OLF control appeared in Katzand D’ Arge-
nio [18]} and D’Argenio and Katz [19]. Applications of SP type controllers are more
numerous. One of the earliest was the MAP Bayesian controller of Sheiner [20].
Similar controllers are found in the USC PC Pack of Jelliffe, et al. [21, 22]. Surveys
and tutorials in this subject are found in Vozeh and Steimer [23], and Schumitzky [24,
25].

EXAMPLE 1: OPTIMAL INFUSION REGIMEN

In the next two sections we illustrate by example some of the ingredients of the
stochastic control formalism. For this purpose it is sufficient to cons:der the simplest
PK settings.

In this section we consider a one compartment model with ivinfusion. In general
one of the problems with the “textbook” version of the stochastic control formalism
is that it does not easily conform to the standard setting in PK/PD applications. The
solution to this problem is a version of the stochastic control formalism whichincludes
continuous time state equations and discrete time measurement equations. However
this is not the place for such a digression. It will be apparent in the example below
that certain awkward constructions could be avoided by a “continuous-discrete”
formalism.

State Equation

In the deterministic case, the time history of the drug concentration satisfies the
differential equation:

dc(t) _

== kO + ’(t) , t>0, C(0)=0 (17)

where at time ¢, C(¢) is the concentration of drug, C{0) = 0; and r(t) is the iv infusion
rate which is assumed to be piecewise constant:

T‘(t) =ra tE [tn,tn-}-l), n = O,l,...,N,

where {t,.} are the times at which the infusion rates can change. Further, k-is the
elimination rate constant and V is the volume of distribution.

If a Gaussian “white” noise process W(t) with mean 0 and “variance” @ is
added to Eq. (17), then the differential equation becomes stochastic and is written
mathematically as:

dC(t) = ~ {kC(i) rit )}dt + dp(t), t>0 (18)

where 3(t) is a so-called Brownian motion such that W(t) = dj3(t)/dt. (The noise
term W (t) can be considered as model mispecification.)
The solution to Eq. (18) is given by the stochastic integral

C(t) = exp{=k(t—1ta)}C(ta) + [1 ~ exp{—k(t = £.)}]/(kV) 7

+ [exp{=k(t = $)}dB(s), £ € [tntne) (19)

tn



To define a discrete time state equation corrersponding to Eq. (1), set: x, = C(t,), ¢=
(k,V) and

Alt,7,¢) = exp{—Fk(t—T1)} (20)
B(t,r,¢) = [1—A(t,r,é)] /(kV) @1)
Wit,r) = [ exp{-k(t~s)}da(s) (22)

It follows from Egs. (20)-(22):

Zopt = An($)Zn + Ba(@)ra + W, n=0,1,...,N (23)

where A, (@) = A(tns1,tn, 8)s Bn(¢) = B(tns1,tn, ¢) and W, = W (tay1,tn)- It can be
shown [1] that the sequence { W, } is independent Gaussian with mean 0 and variance

B.(¢)*}

fi-1
Qn=Q 2k

Additionally, if the infusion rate applied at time ¢, is not exactly », but is equal to
ra + 6rn, where the error sequence {ér,} is independent Gaussian with mean 0 and
variance R,, then Eq. (23) becomes

Tn41 = An(@)zn + Br(@)rn + wa, n=01,...,N (24)

where the process noise

Wy = Ba(d)rn + W,

is independent Gaussian with mean 0 and variance [B.(¢)])* R + Q... Equation (24)
is then the state equation corresponding to Eq. (1).

Measurement Equation

Assume noisy measurements y(sn} of the concentrations C(s,,) are taken at the
sampling times {s,, } such that:

y(8m)=Clsm)+€em, m=1,2,..., M

where ¢, is the assay noise of the m'* measurement. The random variables {¢n} are
typically assumed to be independent Gaussian with mean 0 and standard deviation
om = g(C(sm)). The function ¢g(C) comes from calibrating the assay device at various
test concentrations C.

To define a discrete time measurement equation corresponding to Eq. (2), itis nec-
essary to do some bookkeeping. Essentially y, is the collection of all measurements
{y(5m) : Sm € [tn,tn+1)}. Therelationship between y, and z, is determined as follows.
Let S = {s1,...,s5um} be the set of sample times. Then for eachn =0,1,...,N =1,
either S N [t,, tn41) is empty, or there are indices m(n) and (2 4+ 1) such that



Sn [tnytn-{-]) = {Sm(n)+la~--15nl(n+1)}' (25)

Therefore, define:
ya = 0, if $ N [tn,tns1) is empty. (26)
yn = (Y(Smin)s1r-- - ¥(Sm(n4ny)),  if EQ. (25) holds.

(For example, if N =4, M =3, s1,52¢€ [to, 1) and s3 € [(3, 14), then :2(0) = 0, m(l) =
2, m(3) =2, m(4) =3 and y1 = (y(s1),y(s2))7, v2 = v3 = 0,94 = y(s3).)
Further, for s, € [tn, tas1), it follows from Eqgs. (19)-(22):

C(Sm) = A(sm’t"’ ¢)zﬂ + B(snh tn: ¢)rﬂ + W(Sm, tn)

Therefore when Eq. (25) holds:

Yn = Dn(é)xn + En(¢)7'n + Un (27)

where

Dn(¢) = (A(Sm(n)+l)tna¢')’- --,A(Sm(n+1)atny¢’))T
En(¢) = (B(sm(n)—{-l:tnaé))a" 'sB(Sm(n+1)1tna¢)T
Un = (W(smn)41rtn)y-- W (Smins1)stn)T F (Em(n)41r- - s Emint1)) "

As before it can be shown that the sequence of random vectors {v,} is independent
Gaussian with mean 0 and covariance depending on z, and ¢. Equations (26) and
(27) are then the measurement equations corresponding to Eq. (2).

Optimal design of infusion regimens

In this case, the infusion times and sample times are fixed and the infusion rates
are to be optimized. The controls are therefore given by u, = rn.
The controls will be explicitly constrained to be nonnegative and implicitly con-
strained by the conditions:

E{In}SLmaxs n=1727"'1N+1 (28)

where L., is some maximum allowable level.
Cost Function: Target Level Control-Quadratic Cost

Here we want z,, = L,, where L, is some desired targetlevel atstage n. A suitable
cost function corresponding to Eq. (7) is given by the quadratic cost function:

N
J(W) = E{Y anlnst = Las1)? + 7 (un)’} (29)

n=0

where a, and 7, are given nonnegative constants reflecting the relative importance of
the corresponding terms (including, for example v, = 0). The optimization problem
is to choose the admissible control policy to minimize Eq. (29).



Simulation Study: IPS vs. SP

In this simulation study we compare a separation principle policy with an itera-
tion in policy space. The results presented here are taken from [13]. In the stochastic
control formulation given by Egs. (24), (27)-(29), the following specifications are
made: {4 =0,t, = s, =n,n =1,...,5. In this case Egs. (24) and (27) become

Tnyl = awn+bun+wn’ -1:0:0! nzo)-'-:s
Yn = zp+ Vn, n=1,...,5

where a = exp(—k) and b = (1 - a)/(kV). A "natural” parameter vector for this
model is then ¢ = (a, b).
For the cost function of Eq. (29) the targets and weights are chosen to be:

L L] = 1.0, Lz = 1.6, L3 = 2.2, L4 =2.6and L5 =2.8.
O i —mF = a3 =Q¢ = 0.1; as = 1000;
® o= =7 =7 =1 = 0.0001.

This choice of weighting indicates that we are essentially interested in attaining the
desired level only at the fifth stage of the regimen. This is essentially a “terminal
cost” problem and should reveal the importance of “active” learning. (Early mistakes
are not severely penalized.) The controls u, are nonnegative and the state constraint
Eq. (28) is given by E{z,} <3, n=1,2,...,5.

The prior distributions are chosen as follows: a, b, w, and v, are independent
random variables such that:

w, ~ N(0,0.01),
va ~ N(0,0.2),

a ~ N(0.135,0.0046) (C.V.=34 %),
b~ N(0.278,0.0834) (C.V.=30%)

where for any random variable v the notation v ~ N{m, ¢) means v is Gaussian with
mean m and standard deviation ¢.

Monte Carlo simulations of control performance were conducted. The simula-
tions assessed comparative performance of an optimal separation principle (S P) type
controller and an iteration in policy space (I PS) type controller. The SP controller
employed an extended Kalman filter to calculate the conditional expectations of q, &,
and z, given the data I,. The IPS controller was essentially one iteration in policy
space using the previously calculated SP controller as the admissible nominal policy.
(This particular controller is due to Bar-Shalom and Tse [26] and actually predates
the development of the 7 PS formalism. See [8, 13] for more details.)

Figure 1 shows the control cost J(U) in 100 simulations of the SP and /PS5
controllers. Not only is the mean cost for the IPS controiler significantly lower
than SP, but the standard deviation of the cost is also much lower. The existence
of fewer outliers for I PS is readily apparent from the figure. The fact that the I PPS
performance is better than $P is expected from the definition of an 7 PS policy. The
magnitude of this improvement was unexpected and it is argued that it comes from
active learning.

Figure 2 shows the mean and one-sigma envelopes of the time histories of the
serum concentrations for these same simulations. Note how the mean serum con-
centration of the JPS controller trajectory hugs the constraint boundary (exhibiting
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Fig. 1. SP and IPS costs.

an active learning behavior). -Also note that both controllers hit the target exactly "on
average". ~

EXAMPLE 2: OPTIMAL SAMPLING SCHEDULE DESIGN

In this section we consider the classical PK/PD problem of parameter estimation
and sampling schedule design. Assume noisy measurements y(s,) are taken at the
sampling times {s,} from a PK/PD system modeled by a “nonlinear regression”
equation of the form:

Y(sn) = hn(s5n, @) + €4, n=1,2,..., N (30)

where h,(s,¢) is a known function and ¢, is the error of the nt measurement.
In Eq. (30) the following assumptions are made: The random variables {¢,} are
independent Gaussian with mean 0 and standard deviation ¢,, which is independent
of ¢ but may depend on s,. The function ,(s, ¢) has continuous partial derivatives



SP Trajectories

N
n

‘Concentration

o
0

00

—

[ 5] 8
w
i N
o

f!

ool

Stege : .

e [ I

IPS Trajectorics ;

. 35¢ ‘ =~ One Sigma Envelope

' Mean -

- - =]
-

!
25¢L ‘ ' ," ——— -

T e

Concentration
N .
7
-
~
1

0S|/ | , o

~
~

Stge

Fig. 2. SP and IPS trajectories.

with respect to the components of ¢. The PK/PD vector ¢ is random with known
probability density p(¢).

D-optimality and variants

The problem here is to design a sampling schedule so that the resulting estimate
of ¢ provides as much “information” as possible. The most common measure of this
information is the so-called “D-optimality” criterion; that is the criterion given in
Eq. (8). Similar but not identical criteria occur when the det(A{) in Eq. (9) is replaced
by log det(M). For the model of Eq. (30), it can be shown that the Fisher information
matrix is:

N .
M($,U) = 3" na($,5n) 1u($, 50)/ (31)

n=0

where 1(4, ) = Bha(s, 8)/06 = (9ha(s, 8)/091, .., Oha(s, 8)/ Oy)
and ¢ = (¢1,...,¢p).



In general, the objective is to maximize E{®{M (¢, U)]} for some suitable function ¢.
We now put this problem into the stochastic control framework developed above.

First define the “controls” u, = s,41 with control constraints: 0 € 1 € u; <
... £ uy £ T. The measurement equation corresponding to Eq. (2) is obtained by
setting ¥, = y(s,) and v, = ¢, in Eq. (30):

Yn = ha(un, ¢) + Un (32)

(Note that there are no “state” variables in this equation.)
The main purpose of the “state” equation is to get the cost function in the form
of Eq. (10). To this end, define the “matrix” state variables {z,} by the state equation:

Tnel = Tn + n(qﬁ,un)TU(é, Up), z0=10 n=01,...,N

(Note that the state equation is deterministic given ¢.) If we define:

C(X,U,8) = —0(zn41)

then the resulting optimization problem becomes one of minimizing a “terminal
cost™:

J(U) = = [ zn)p(g)dd (33)

over all admissible controls U.

In the PK/PD literature, the D-optimality problem (and its variants) have not
been considered explicitly from such a stochastic control framework. However a
number of previous works can be interpreted in this light. For example, in D’ Argenio
[27] and Walter-Pronzato [28], optimal “open loop” controllers are cobtained; and in
D’ Argenio [29] an optimal “separation principle” controller is derived. (See also [30]
for a recent survey on this subject.)

Considered as a terminal cost problem, the optimal sampling schedule design
should be ideally suited for optimal policies. In [31] an iteration in policy space
approach is suggested. A “natural” nominal admissible control policy is available.
Namely:

Uo = (po,- -, un)

is such that, at each stage n, the remaining points {u;,7 > n} are equally distributed
in the open interval (u,-1,T), where u_; = 0.
It is hoped that this control perspective brings new insight to optimal sampling
design. :

ACKNOWLEDGMENTS

The writing of the paper benefited in many ways from many people; and the
author wishes to express his sincere appreciation to David Bayard, David D’ Argenio,
Marianne Hubner, Roger Jelliffe, Mark Milman and Poornima Raghu. Further, this
research was supported in part by National Institutes of Health grants RR01629 and
P41-RR0O1861.



REFERENCES

—

10.

11.

12.

13.

14,

13.

16.

17.

18.

19.

20.

21,

22.

A. .H. Jazwinski. Stochastic Processes and Filtering theory. Academic Press, New York, 1970.
A. Racine-Poon and A. E M. Smith. Population models. In D. A. Berry and Marcel Dekker
(Eds.), Statistical Methodology in the Pharmaceutical Sciences, New York, 1990, pp. 139-162.

J. L. Steimer, A. Mallet, and F. Mentre. Estimating interindividual pharmacokinctic variability.
In M. Rowland et al. (Eds.) Variability in Drug Therapy: Description, Estimalion, and Control,
Raven Press, New York, 1985, pp. 65-111.

. R. W. Jelliffe. A simulation study of factors affecting aminoglycoside therapeutic precision. In

C. Cobelli and L. Mariani (Eds.), Proc. First Symposium on Modeling and Control in Biomedical
Systems, Venice, Italy, 1988, pp. 86-88.

R. W. Jelliffe, A. Schumitzky, and M. Van Guilder. A simulation study of factors affecting
aminoglycoside therapeutic precision, Technical Report: 90-3 Laboratory of Applied Pharma-
cokinetics, USC School of Medicine, Los Angeles, California, 1990.

D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Prentice Hall,
Englewood Cliffs, N.J., 1987.

R.Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton,
N.J., 1961.

. D. Bayard. A forward method for optimal stochastic control of nonlinear systems. In Proc. 27th

IEEE Conference on Decision and Control, Austin, Texas, 1988. To appear: IEEE Trans. Aut. Control.

D. Bayard. Aspects of stochastic adaptive control synthesis. Doctoral Thesis, Electrical Engi-
neering Department, State University of New York at Stony Brook, 1984.

Y. Bar-Shalom. Stochastic dynamic programming: caution and probing. IEEE Trans.
Aut. Control., AC-10:1184-1195 (1981).

D. Bayard and M. Eslami. Implicit dual control for general stochastic systems. Opt. Control
Applications Methods, 6: 265-279 (1985).

W. E Powers, P. H. Abbrecht, and D. G. Covel. Systems and microcomputer approach to
anticoagulant therapy. IEEE Trans. Biomed. Eng., BME 27:520-523 (1980).

S. Amrani, E. Walter, Y. Lecourtier, and R. Gomeni. Robustcontrol of uncertain pharmacokinetic

.models. Proc. IFAC 9th Triennial World Congress, Budapest, Hungary 3079-3083 (1984).

A. Schumitzky, M. Milman, P. Khademi, and R. jelliffe, Approximate optimal closed loop
control of pharmacokinetic systems. In Proc. IFAC Workshop on Decision Support for Patient
Management: Measurement, Modeling, and Control, British Medical Informatics Society, London,
1989, pp. 338-347.

J. Gaillot, J-L. Steimer, A. Mallet, ]. Thebault, and A. Beider. A prior lithium dosage regimen
using population characteristics of pharmacokinetic parameters. J. Pharmacokin.  Biopharm.
7:579-628 (1979).

Q. Richter and D. Reinhardt. Methods for evaluating optimal dosage regimens and their
application to theophylline. Int. [. Clin. Pharmacol. Ther. Toxicol.. 20:564-575 (1982).

A. Mallet, F. Mentre, ]. Giles, A. W, Kelman, A. H. Thomson, S. M. Bryson, and B. Whit-
ing. Handling covariates in population pharmacokinetics with an application to gentamicin.
Biomed. Meas, Infor. Contr, 2:138-146 (1988).

D. Katz and D. Z. D’Argenio.  Stochastic control of pharmacokinetic systems: Open loop
strategies. In C, Cobelli and L. Mariani (Eds.), Proc. First Symposium on Modelling and Control
in Biomedical Systems, Venice, Italy, 1988, pp. 560-566.

D. Z. D’Argenio and D. Katz. Implementation and evaluation of control strategics for indi-
vidualizing dosage regimens with application to the aminoglycoside antibiotics. J. Pharma-
cokin. Biopharm. 14:523-37 (1986).

L. B. Sheiner, B. Rosenberg, and K. L. Melmon. Modelling of individual pharmacokinetics for
computcer-aided drug dosage. Computers and Biomedical Research, 5:441-459 (1972).

R. W. Jelliffe. Clinical applications of pharmacokinctics and control thecory: planning, moni-
toring, and adjusting dosage regimens of aminoglycosides, lidocaine, digitoxin, and digoxin,
In R. Maronde (Ed.), Selected Topics in Clinical Pharmacology, Springer-Verlag, New York, 1986,
pp. 26-82.

R. W. Jelliffe, A. Schumitzky, and L. Hu, M. Liu. PC Computer programs for Bayesian adaptive
control of drug dosage regimens. Technical Report: 90-5 Laboratory of Applied Pharmacoki-
netics, USC School of Medicine, Los Angeles, California, 1990.



23.

24.

25.

26.

27.

28.

29.

30.

31.

S.Vozeh and . L. Steimer. Feedback control methods for drug dosage optimization. Clin. Phar-
macokinetics, 10:457-476 (1985).

A. Schumitzky. Stochastic control of pharmacokinetic systems. In R. Maronde (Ed.), Selected
Topics in Clinical Pharmacology and Therapeutics, Springer-Verlag, New York, 1986, pp. 13-25.

A. Schumitzky. Adaptive control in drug therapy. In H. Ducrot et al. (Eds.) Computer Aid to
Drug Therapy and to Drug Monitoring, Berne, Switzerland, March 6-10, 1978, North Holland,
Amsterdam, 1978, pp. 357-360.

Y. Bar-Shalom and E. Tse. Concepts and methods in stochastic control. In C. Leondes (Ed),
Control and Dynamic Systems, vol. 12, Academic Press, New York, 1976, pp. 99-172.
D.Z.D’Argenio. Incorporating prior parameter uncertainty in the design of sampling schedules
for pharmacokinetic parameter estimation experiments. Math. Biosciences, 99:105-118 (1990).
E.Walterand L. Pronzato. Robust experimental design via stochasticapproximation. Math. Bio-
sciences, 75:103-120 (1985).

D.Z.D' Argenio. Optimal sampling times for pharmacokinetic experiments. . Pharmacokin. and
Biopharm., 9:739-56 (1981).

L. Pronzato and E. Walter. Qualitative and quantitative experiment design for phenomenolog-
ical models - A survey. Automatica. 26:195-213 (1990).

D. Bayard and A. Schumitzky. A stochastic control approach to optimal sampling schedule
design. Technical Report: 90-1 USC/Laboratory of Applied Pharmacokinetics, Los Angeles,
California, 1990.



