Population Pharmacokinetic Models: Parametric and Nonparametric Approaches

Roger W. Jelliffe, M.D
Professor of Medicine

Laboratory of Applied Pharmacokinetics,
USC Keck School of Medicine

www.usc.edu/hsc/lab_apk/
Optimal Target-Oriented, Model-Based Individualized Drug Dosage Regimens.

- Use Population Model as Bayesian Prior.
- Set *specific* target(s): Serum conc(s) at desired time(s), for example.
- Plan the regimen to hit the target(s).
- But: just *how precisely* will the regimen do this? A good question!
- How to predict such precision in advance?
What is the **IDEAL** Pop Model?

- The correct **structural** PK/PD Model.
- The collection of each subject’s **exactly known** parameter values for that model.
- Therefore, **multiple individual models**, one for each subject.
- **Usual statistical summaries** can also be obtained, if desired, but may **lose** info.
Parametric Population Models: IT2B, NONMEM, etc

- Assume shape (normal, etc,) of param distribs. (Describe params parametrically)
- Get the param param values = param means, SD’s, covariances, etc.
- Get F from intermixed IV+PO dosage
- Get SEM’s, confidence limits, signif tests.
- Separate “Inter-” from “Intra-” Individual from assay Variability
- Usually get only summary single values for parameter distributions.
- They are not consistent.
Inter-Individual Variability

- Usually a single number (SD, CV%) in parametric population models
- But there may be sub-populations
- eg, fast, slow metabolizers.
- How describe all this with one number?
- A good question!
Intra-Individual Variability

- Assay error pattern, plus
- Errors in Dosage Amounts
- Errors in Recording Dosage Times
- Errors in Recording Sampling Times
- Structural Model Mis-specification
- Changing parameter values with time
Determining the Assay SD polynomial

- Measure blank, low, medium, high, and very high samples in quadruplicate.
- Get mean + SD for each quadruplicate sample.
- Fit a polynomial to the mean and SD data.
- \(SD = A_0C^0 + A_1C^1 + A_2C^2 + A_3C^3 \)
- Then can weight each measurement by the reciprocal of its variance (Fisher Info)
- No lower detectable limit for PK work
Y = 0.56708 - 0.10563X + 0.016801X^2
$Y = 0.02458 + 0.04948X + 0.0020318XSq$, $RSq = 0.957$
Intra - Individual Var (IIV) vs Assay SD.

- IIV = Gamma\((A_0C^0 + A_1C^1 + A_2C^2 + A_3C^3)\)
- or, IIV = \((A_0C^0 + A_1C^1 + A_2C^2 + A_3C^3)\)
- Thus, IIV can be a single number
 - Just by itself, as often, where get \(A_0\), (all other \(A\)’s set to zero)
 - Or, an entire polynomial.
 - Or, best, Scaling the assay SD polynomial
- A summary index of quality of care given.
- Gamma often = \(< 2 \text{ to } > 4\)
A Parametric Population Model
Joint Density

- **Vd mean**: 0.318, **SD**: 0.1243, **mode**: 0.2415 L/kg
- **CLslope mean**: 0.0688, **SD**: 0.02599, **mode**: 0.05218
- **Cov (Vd-CLslope)**: 0.001429
- **r (Vd-CLslope)**: 0.442
A Population Model, as made by Breugel
An NPML Population Joint Density, as made by Mallet
Nonparametric Population Models (1)

- Get the entire ML distribution, a Discrete Joint Density: one param set per subject, + its prob.
- Shape of distribution not determined by an equation, only by the data itself.
- Multiple indiv models, one model set per subject.
- Can discover, locate, unsuspected subpopulations.
- Get F from intermixed IV+PO dosage.
Nonparametric Population Models (2)

- The multiple models permit multiple predictions.
- Can predict precision of goal achievement by a dosage regimen.
- Behavior is consistent.
- Use IIV +/- or assay SD, stated ranges.
- No signif tests yet. Bootstrap, etc. in future.
Fig. 1. True density of $\theta = (K, V)$.
Fig. 6. Smooth empirical density of $\theta = (K, V)$. 20 subjects
Fig. 4. Smooth estimated density of $\theta = (K, V)$. 5 levels / subject
Fig. 5. Smooth estimated density of $\theta = (K, V)$. 2 levels / subject
Fig. 2. Normal density of a random vector with same mean and covariance as $\theta = (K, V)$.
Larger + Nonlinear IT2B and NPEM Models

- Linear or Nonlinear Structural Models.
- May use BOXES to help make model.
- Responses are Serum Levels, Effects.
- Prepare Model + data on PC.
- Use the Internet.
- SSH to SDSC Cray T3E, FTP data.
- Do the analysis, get results and density.
- FTP results back to PC, see them there.
Parametric Population Models

- Single point parameter estimates only.
 - Only one (1) model.
 - Cannot discover unsuspected subpopulations
 - Cannot predict precision of goal achievement
 - Not consistent, but have SEM, confidence limits
 - Can get Parameter ranges
 - Can get Gamma
Nonparametric Population Models

• Get the entire ML parameter joint density
 – Use stated ranges. Use Gamma.
 – Get multiple parameter sets, one per subject
 – Discover, locate, subpopulations
 – Can predict precision of goal achievement
 – Consistent. No signif tests yet. Bootstrap in future.
How to do Pop Modeling best?
Use Both Methods

- First, determine the assay SD polynomial.
- Second, Parametric: get the ranges, gamma.
- Third, Nonparametric: get the full discrete joint density. Multiple models.
 - Predict precision of goal achievement
 - Find the best dose to achieve target goals with maximum precision.
 - Multiple Model Dosage design
Our LAPK group