Nonlinear Parametric and Nonparametric Population Pharmacokinetic Modeling on a Supercomputer

Roger W. Jelliffe, Michael Van Guilder, Robert Leary, Alan Schumitzky, Xin Wang, and Alexander Vinks

Laboratory of Applied Pharmacokinetics, USC School of Medicine, the San Diego Supercomputer Center, and the Hague Hospitals Central Pharmacy, the Hague, the Netherlands

www.usc.edu/hsc/lab_apk/
Why Make Population Models?

• To describe and understand Drug PK/PD Behavior

• To use as Bayesian Prior for designing Goal-Oriented, Model-Based, individualized dosage regimens for patients
Goal-Oriented, Model-Based Individualized Drug Dosage Regimens: the Structure

• Use Population Model as Bayesian Prior.
• Set *specific* target(s): Serum conc goal(s) at desired time(s), for example.
• Compute the regimen to achieve the goal(s).
• But: just *how precisely* will the regimen achieve the goal(s)? A good question!
• Even with feedback from serum levels, etc.
Parametric Population PK/PD Models

- **Assume** shape (normal, etc.) of param distrib.s.
- Get Population Parameter Means, SD’s, covariances, ranges.
- Separate “inter” from “intra” - individual from assay Variability
- But, only **one** value for each parameter, so
- **Cannot** evaluate expected therapeutic precision
- Can get confidence limits, do signif. tests.
- Not consistent.
Inter-Individual Variability

• A single number (SD, CV%) in parametric population models
• But there may be sub-populations
• eg, fast, slow, and medium acetylators
• How describe all this with one number?
• A good question!
Intra-Individual Variability

- Assay error pattern
- Errors in Recording Sampling Times
- Errors in Dosage Prep and Admin
- Changing parameter values with time
- Structural Model Mis-specification
- However, all this is a mixture of
 - Measurement Noise, and
 - Process Noise (Noise in the DE’s)
Determine the Assay Variability

- As first suggested by Tom Gilman,
- Measure blank, low, medium, high, and very high samples at least in quadruplicate.
- Get mean + SD for each quadruplicate sample
- \(SD = A_0C^0 + A_1C^1 + A_2C^2 + A_3C^3 \)
- Then can weight each measurement by the reciprocal of its variance (Fisher Info)
- No lower detectable limit!
More on Intra - Individual Variability

• \(\text{Var} = \text{Gamma} \times \text{assay SD} \)
• or, \(\text{Var} = (A_0C^0 + A_1C^1 + A_2C^2 + A_3C^3) \)
• Thus, Var can be a single number
 – Just by itself, as often, where get \(A_0 \), (all other A’s set to zero)
 – Or, scaling the assay error polynomial
 – Or, an entire polynomial.
• A possible relative index of quality of care.
Nonparametric Population Models

• Get not only means, SD’s, etc, but also the entire distribution, a Discrete Joint Density.
• Can evaluate expected therapeutic precision.
• Can discover unsuspected subpopulations.
• Behavior is consistent.
• Use Var +/- or assay SD, stated ranges.
• No confidence limits or tests of signif yet.
 – Bootstrap, etc. in future.
A Population Model, as made by Breugel!
An NPML Population Joint Density, as made by Mallet
An NPEM Pop Model by Schumitzky
A Parametric Population joint density

V_{d} \text{ mean} = 0.318, \text{ SD} = 0.1243, \text{ mode} = 0.2415L/kg
CL_{slope} \text{ mean} = 0.0688, \text{ SD} = 0.02599, \text{ mode} = 0.05218
Cov (V_{d}-CL_{slope}) = 0.001429
r (V_{d}-CL_{slope}) = 0.442
How to do Pop Modeling best? Use Both Methods

- Parametric: First, get assay errors, gamma, ranges, for assay and intraindividual variability.
- Nonparametric: Then, get the full discrete joint density
 - Find the best dose to achieve target goals.
 - Use Multiple Model Dosage design
“Multiple Model” Dosage Design

- Start with multiple models in pop model
- e.g., each pop subject’s indiv PK model.
- Give a regimen to each subject’s model,
- Predict each subject’s future levels,
- Compare each with chosen goal, get MSE.
- A better tool: use an NPEM joint density.
- Compute regimen having least weighted squared error in target goal achievement.
User Manual for
The Non-Parametric EM Program for Population Pharmacokinetic Modeling
Version 3.0, August 26, 1995.

Roger W. Jelliffe, M.D., Alan Schumitzky, Ph.D.,
and Michael Van Guild, Ph.D.

LABORATORY OF APPLIED PHARMACOKINETICS

USC SCHOOL OF MEDICINE
2250 Alcazar St. (CSC 134-B), Los Angeles, CA, 90033
Supported by NIH Grant LM 05401
and by the Stella Slutzky Kunin Memorial Research Fund
Continuous IV Vanco. Predictions when regimen based on means is given to all subjects
Continuous IV MM Vanco regimen, Day 1.

95% and 99% most likely predictions.
Getting Nonparametric Bayesian Posteriors with Serum Level Feedback

• Start with Population discrete joint density
• Use the patient’s measured serum levels
• Recompute probability of each pop model, given the patient’s measured levels.
Continuous IV Vanco, Day 2. 95% and 99%
Larger + Nonlinear
IT2B and NPEM Models

- Linear or Nonlinear Structural Models
- Serum Levels +/- or Effects
- Available over the Internet
- Prepare Model + data on PC
- SSH to SDSC Cray T3E, FTP data.
- Do the analysis, get results and density.
- FTP back to PC, see them there
Our USC Lab

David Bayard, Ph.D Aida Bustad
Roger Jelliffe, M.D. Sergei Leonov, Ph.D
Mark Milman, Ph.D Alan Schumitzky, Ph.D
Mike Van Guilder, Ph.D Xin Wang, Ph.D

Bob Leary at SDSC, and
Pascal Maire, Xavier Barbaut, Alain Laffont,
Stephane Lecoq et al. at ADCAPT, Lyon, France,
(Supported in part by LM05419 and RR11526)
www.usc.edu/hsc/lab_apk/