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ABSTRACT 
 
Introduction.  
 
 This study examined parametric and nonparametric population modeling methods in 
three different analyses. The first was of a real, though small, clinical data set from 17 patients 
receiving intramuscular Amikacin. The second was of a Monte Carlo simulation study in which 
the populations ranged from 25 to 800 subjects, the model parameter distributions were 
Gaussian, and all the simulated subjects’ parameter values were exactly known prior to the 
analysis. The third analysis was again of a Monte Carlo study in which the exactly known 
population sample consisted of a unimodal Gaussian distribution for the volume of distribution 
V, but a bimodal one for the elimination rate constant K, simulating rapid and slow eliminators of 
a drug. 
 
Methods.  
 
 For the clinical data set, the parametric iterative 2-stage Bayesian (IT2B) approach, with  
the First Order, Conditional Expectation (FOCE) approximate calculation of the conditional 
likelihoods was used [1], and the nonparametric expectation maximization (NPEM) and 
nonparametric adaptive grid (NPAG) approaches, both of which use exact computations of the 
likelihood [1]. 
 
 For the first Monte Carlo simulation study, the above programs were also used. A 1-
compartment model with unimodal Gaussian parameters V and K was employed, with a 
simulated IV bolus dose and two simulated serum concentrations per subject  In addition, a 
newer parametric EM (PEM) program, with a Faure low discrepancy computation of the 
conditional likelihoods [2], and also NONMEM, both the first order (FO) and the FOCE versions, 
were used. 
 
 For the second Monte Carlo study, a 1 compartment model with an intravenous (IV) 
bolus dose was again used, with five simulated serum samples obtained from early to late after 
a dose. A unimodal distribution for V but a bimodal one for K were chosen, to simulate two 
subpopulations, of “fast” and “slow” metabolizers of a drug. NPEM results were compared that 
of a unimodal parametric joint density having the true population parameter means and 
covariance. 
 
Results.  
 
 For the clinical data set, the interindividual parameter percent coefficients of variation 
(CV%) were least with IT2B, suggesting less diversity in the population parameter distributions. 
However, the exact likelihood of the results was also least with IT2B, and was 14 logs greater 
with NPEM and NPAG, which found a greater and more likely diversity in the population studied. 
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 For the first Monte Carlo data set, NPAG and PEM, both using accurate computations, 
showed statistical consistency, in accordance with theory [3,4,16]. Consistency means that the 
more subjects studied, the closer the estimated parameter values approach the true ones. 
NONMEM FOCE and NONMEM FO, and the IT2B FOCE methods do not have this guarantee 
[3,4]. Results obtained by IT2B FOCE, for example, often strayed visibly from the true values as 
more subjects were studied. 
 
 Further, with respect to statistical efficiency (precision of parameter estimates), NPAG 
and PEM had good efficiency and precise parameter estimates, while precision suffered with 
NONMEM FOCE and IT2B FOCE, and severely so with NONMEM FO. 
 
 For the second Monte Carlo data set, NPEM closely approximated the true bimodal 
population joint density, while an exact parametric representation of an assumed joint unimodal 
density having the true population means, SD’s, and correlation gave a totally different picture. 
 
Conclusions.  
 
 The smaller population interindividual CV% estimates with IT2B on the clinical data set 
are probably the result of assuming Gaussian parameter distributions, and/or of using the FOCE 
approximation. NPEM and NPAG, having no constraints on the shape of the population 
parameter distributions, and which compute the likelihood exactly and estimate parameter 
values with greater precision, detected the more likely greater diversity in the parameter values 
in the population studied.  
 
 In the first Monte Carlo study, NPAG and PEM had more precise parameter estimates 
than either IT2B FOCE or NONMEM FOCE, and very much more precise estimates than 
NONMEM FO. In the second Monte Carlo study, NPEM easily detected the bimodal parameter 
distribution at this initial step, without requiring any further information. 
 
 Population modeling methods using exact or accurate computations have more precise 
parameter estimation, better stochastic  convergence properties, and are, very importantly, 
statistically consistent. Nonparametric methods are better than parametric ones at analyzing 
populations having unanticipated non-Gaussian or multimodal parameter distributions.  
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1. INTRODUCTION 

 Population pharmacokinetic (PK) and pharmacodynamic (PD) modeling is done to 
describe experience with a drug in a collection of patients in a way that will be useful for 
understanding the drug’s behavior, and especially for subsequent use as a Bayesian prior in the 
treatment of similar patients who must receive that drug in the future. The present report 
describes a comparison of parametric and nonparametric population modeling methods in three 
situations: first, to analyze a real, though small, clinical data set of patients receiving 
intramuscular amikacin; second, to analyze a Monte Carlo simulation study of a population in 
which each subject’s parameter values were simulated, and therefore were exactly known prior 
to the analysis, as can never be done with real clinical data; third, to analyze a second Monte 
Carlo simulated population having both rapid and slow eliminators of a drug. 
  
 The parametric iterative 2-stage Bayesian (IT2B) approach, employing the widely used 
first-order, conditional expectation (FOCE) approximation to compute the conditional likelihoods 
of the results given the data, was the parametric method used to analyze the clinical data set. 
This was compared with the nonparametric expectation maximization (NPEM) method 
[10,11,17] and the nonparametric adaptive grid (NPAG) method  [2]. Further, NONMEM, both its 
first order (FO) and first order, conditional expectation (FOCE) versions [7-9], and a new 
parametric expectation-maximization (PEM) method [17] were also used for the first Monte 
Carlo study. NPEM was used for the second Monte Carlo analysis. 
 

2. A BRIEF REVIEW OF PARAMETRIC APPROACHES TO POPULATION 
 PHARMACOKINETIC MODELING 
 
 A variety of parametric population modeling methods exist [5-9]. They assume that the 
pharmacokinetic parameters are either normally or lognormally distributed in the population 
studied, and that the population parameter distributions are therefore fully described by the 
estimated parameter means, standard deviations (SD's), and the correlations (and covariances) 
between them, as the means, SD’s and covariances are the definitive parameters in the 
equations describing the shape of Gaussian distributions.  
 
2.1 THE PARAMETRIC ITERATIVE TWO-STAGE BAYESIAN (IT2B) METHOD 

 The IT2B population modeling method, used here from the USC*PACK collection of 
software [1] begins by setting up an initial estimate of the mean values for each parameter in the 
pharmacokinetic structural model, and their standard deviations (SD’s). These are used as 
Bayesian priors. In the first stage, the method examines each patient’s data and obtains each 
patient's maximum a posteriori probability (MAP) Bayesian posterior parameter values [12]. 
Then, in the second stage, the new summary parameter means and SD’s are found. The IT2B 
approach then uses these revised summary population parameter means and SD’s as a new 
initial Bayesian prior, and does another MAP Bayesian analysis of the data.  It again first obtains 
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each patient's new MAP Bayesian values, and then again summarizes them as new population 
parameter means and SD’s. This two-stage process continues iteratively, and ends when a 
convergence criterion is reached. The IT2B method described here uses the First Order 
Conditional Expectation (FOCE) approximation to calculate the conditional means and 
covariances of the population parameters, given the population raw data [1,17].  
 

2.2  Weighting the Data: Determining the Assay Error Polynomial 

 

 It is useful, in both parametric and nonparametric analyses, to assign a measure of 
credibility to each data point to be fitted or analyzed. In the IT2B program, and also in the NPEM 
and NPAG programs of the USC*PACK collection [1], one is encouraged, first of all, to 
determine the error pattern of the assay quite specifically, by measuring  several assay samples 
in at least quadruplicate (a blank, a low sample, a medium one, a high one, and a very high one, 
for example, that cover the full working range of the assay), and to find the mean and SD for 
each of these samples [13,14]. One can then express the overall relationship between serum 
concentration and assay SD as  
 

SD = A0 + A1C + A2C2 + A3C3       (1) 

where SD is the assay SD, A0 through A3 are the coefficients of the polynomial, C is the 
measured concentration, C2 is the concentration squared, and C3 is the concentration cubed. In 
this way, each assay data point can be given a weight in the modeling process appropriate to 
the precision with which it was measured, and thus to its credibility, according to its Fisher 
information [13-15]. 

 
2.3  Weighting the Data: Estimating the Remaining Environmental Error 

 In addition, a further parameter, gamma, can then yield an estimate of the overall 
contribution of the remaining environmental sources of intra-individual variability, such as the 
errors in preparation and administration of the doses, errors in recording the times when doses 
were given and serum samples drawn, the mis-specification of the pharmacokinetic model used, 
and any unsuspected changes in parameter values of the subjects during the period of the data 
analysis. Gamma was used in the USC*PACK IT2B program [1] as a multiplier of the above 
assay error polynomial, as shown below. It is now also implemented in the NPAG population 
modeling program, but this was not yet done at the time of this analysis. 
 

 Total error SD = Gamma(A0 + A1C + A2C2 + A3C3)  (2) 
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 If the value of gamma is 1.0, it suggests that there is no other source of variability than 
the assay error pattern itself. Gamma is usually greater than 1.0, but may sometimes be less. 
Gamma is an overall reflection of all the other sources of intraindividual variability besides the 
assay error. In this way, one can get an impression of how much of the total noise is due to the 
assay SD, and how much is due to the remaining environmental noise. This is useful, as it gives 
separate information both about the precision of the assay and about the precision of the 
environment in which the study was done. 
 

2.4 THE PARAMETRIC EXPECTATION – MAXIMIZATION (PEM) METHOD. 

 This parametric method [2,17] is exactly similar to the IT2B approach described above, 
except that the FOCE approximate calculation of the conditional means and covariances is 
replaced by a Faure low discrepancy integrator, which gives an accurate computation. 
 

3.0 A BRIEF REVIEW OF NONPARAMETRIC (NP) POPULATION MODELING METHODS 

 If the correct structural PK/PD model of the drug could somehow be exactly known, and 
if each individual subject's pharmacokinetic parameter values in a given population could also 
somehow be directly observed and exactly known (a clinical impossibility), and if, for example, 
we were examining two typical model parameters such as volume of distribution (V), and 
elimination rate constant (K), the true population distribution of these parameter values would 
simply be the collection of each individual subject’s exactly known values of V and K. For such a 
two-parameter model, for example, the graphic result would be a scattergram of the collection of 
those points, one point for each subject studied. All genetically determined subpopulations 
would also be truly known (perhaps not explicitly recognized or classified yet), but nevertheless 
specifically located and quantified. If this distribution were summarized simply as means, SD’s, 
and correlations, important information about the distribution, which is often genetically 
polymorphic, would be lost. However, in this “ideal” model, no statistical statements can be 
made about the reproducibility of the parameter values, such as confidence limits of the 
parameter distributions or their means, SD’s, etc. 
 
 Lindsay [19] and Mallet [16] were the first to show that the optimal maximum likelihood 
solution to the population modeling problem is a discrete (not continuous), spiky (not smooth) 
probability distribution in which no preconceived parametric assumptions (such as Gaussian, 
lognormal, or other) are made about its shape. The nonparametric maximum likelihood (NPML) 
estimate of the population model joint parameter distribution, whatever its shape or distribution 
turns out to be, is resolved into at most N discrete points for the N patients in the population 
studied. Each such discrete support point is a collection of estimated single parameter values, 
one for each model parameter such as V, K, etc., along with an estimate of the probability 
associated with each such set or combination of values. The probabilities of all the support 
points in the population sum to 1.0. Parameter means, SD’s, and covariances are easily 
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obtained as well. The only assumption made about the shape of the discrete parameter 
distributions is that, for each model parameter, the shape, whatever it is, is the same for all 
subjects in the population [10,16]. The NPML method of Mallet [16] can function with only one 
sample per patient, if required. Just as with the so-called “ideal” model, however, no statistical 
statements about confidence limits can be made for the NP models. However, the various 
percentile values of the specific NP parameter distributions are easily obtained. 
 
 A nonparametric expectation-maximization (NPEM) method was developed by 
Schumitzky [10,11]. It is an iterative EM method, but is nonparametric. Like NPML, it also can 
function with only one sample per patient if needed. Like NPML, it also does not make any 
parametric assumptions about the shape of the joint probability distribution. It also computes the 
entire discrete joint distribution of population support points. In contrast to NPML, though, NPEM 
obtains a continuous (although very spiky) distribution, which finally becomes discrete in the 
limit. With each iteration, NPEM examines the patient data and develops a more and more spiky 
(and more likely) joint population parameter distribution. In the limit, the spikes become discrete 
support points, up to one for each subject studied, each of which contains a set of parameter 
values, each set of which has a certain probability, just as with the NPML method.  
 
 Both the NPML and the NPEM programs approach the unattainable “ideal” population 
model described earlier. Both NPML and NPEM have been shown to converge to essentially the 
same results [20]. Both NPML and NPEM are proven under suitable hypotheses to have the 
desirable property of mathematical consistency [3,4,21]. This important property of consistency 
means that the greater the number of subjects that are studied in a population, the closer the 
results obtained approach the true population parameter values.  If a method is not statistically 
consistent, it is not proven to have that behavior, and there is no guarantee that studying any 
more subjects will actually yield any better or more trustworthy results. In fact, as shown later, 
results can actually get worse as more patients are studied. 
 
 Most currently available parametric maximum likelihood population modeling methods 
do not have the proven property of consistency, as they use approximations such as the FO 
(first order) or FOCE (first order, conditional expectation) software to compute the conditional 
likelihoods, which then are not exact. Many workers using current parametric population 
modeling methods such as NONMEM, for example, often seem not to have reported the actual 
value of the likelihood of the results given the raw data and the error model used. Instead, they 
have used indices of “goodness of fit”, the confidence limits of the parameter values, and the 
bias and precision of predictions of subsequent serum concentrations. However, the recent 
class of Bayesian population analysis methods [33] has the property of consistency. 
 
 The nonparametric methods compute the likelihood exactly, simply by summing the 
discrete support points rather than having to integrate a continuous function. They give 
percentile estimates of the dispersion of the parameter distributions, but not confidence limits. 
This is an important difference between the parametric and nonparametric methods. 
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 However, the likelihood of the IT2B and the NPEM collections of support points can be 
computed and compared directly, under exactly similar conditions, as the final IT2B collection of 
MAP Bayesian posterior support points can be analyzed in the IT2B program in the USC*PACK 
collection just as if it had come from NPEM or NPAG, and its final likelihood can be computed 
exactly [1]. This feature was implemented in the USC*PACK IT2B software specifically to permit 
such comparisons. 
 
 Since it is never possible to know any patient's parameter values exactly in real life, we 
must infer them or estimate them from the data of the doses of the drug given and the 
responses (usually serum concentrations) found. We study a sample of patients requiring 
therapy with a drug (the most relevant population sample) by giving the drug, measuring serum 
concentrations and/or other responses, and estimating the population model parameter 
distributions. On the other hand, using Monte Carlo simulation, we may study a sample of 
simulated subjects in which each subject’s parameter values are exactly known prior to the 
analysis, so that we can then see just how well the method in question works to discover the 
true simulated population parameter distributions.  
  
 Many patient populations are made up of genetically determined clusters or 
subpopulations such as fast and slow metabolizers of a drug. The relative proportions of fast 
and slow subjects may vary from one population (Caucasian people, for example) to another 
(Asian people, for example [18]). Describing a real distribution of subpopulations (whatever it is) 
optimally may be very difficult parametrically, assuming normal, lognormal, or multimodal 
distributions. One must somehow anticipate and assume in advance, based on other 
information, that the population parameter distribution will be bimodal or multimodal, for 
example. 
 
 The word nonparametric (NP) is also not to be confused with noncompartmental 
modeling approaches based on statistical moments, which also are sometimes called 
nonparametric. The NP approach described in the present report always has a specific 
structural model, with its specific model differential equations, and their model parameters 
(volumes, rate constants, clearances, etc.). It also has a specific error model like the assay and 
environmental error polynomial described above. 
 
3.1 NEWER DEVELOPMENTS IN  NONPARAMETRIC POPULATION MODELING 

 A significant improvement in NP modeling was then made by Leary [2]. The original 
NPEM strategy, based on a large fixed grid covering the parameter space, was computationally 
quite intensive. Leary [2] showed that the likelihood of the results obtained correlated strongly 
with the number of grid points used in the computations. The quality of the NPEM result (the 
log-likelihood) thus depends on the number of grid points used in the analysis. A powerful 
machine and much computer time were often needed to obtain precise results with the original 
NPEM, using many grid points to get good resolution over the ranges of the parameters. 
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 Leary then developed a new nonparametric “adaptive grid” (NPAG) procedure, which 
combined with an interior point rather than an EM algorithm (as suggested to Leary by Burke 
[31]), made significant advances in the quality, speed and memory requirements for an NP 
population analysis [2]. The NPAG method thus begins with a smaller and coarser grid. After 
this is initially solved and the support points found, the grid is refined by adding perturbations 
(extra grid points, about 10 for each previous solution support point), near them. Using this new 
grid, the problem is solved again. Once again, new grid points are placed near the previous 
solution points. This process then continues iteratively, using decreasing perturbations, 
gradually using a finer and finer adaptive resolution of the grid, until a convergence criterion is 
met.  
 
 NPAG made a significant improvement in quality of the results, with far less overall 
computational time and effort. For example, analyzing an 8 subject, 5 parameter problem with 
the original NPEM, on the 1152 processor IBM Blue Horizon computer at the San Diego 
Supercomputer Center (at the time the fastest non-classified computer in the world), took 2037 
processor-hours, used 164 million grid points and 10000 Mbytes of memory. It achieved a 
likelihood of -433.1.  In contrast, NPAG, running only on a single processor 833 MHz Dell PC, 
used only 5000 grid points, only 6 Mbytes of memory, took only 1.7 processor hours. It achieved 
a likelihood of -433.0. NPAG has greatly reduced the computational time and memory 
requirements compared to NPEM, and many population modeling tasks can now be done on a 
single processor notebook PC which used to require a large parallel mainframe machine.  
 
4.0 METHODS: THE CLINICAL DATA SET 

 This retrospective clinical data set was obtained from patients all of whom received 
intramuscular (IM) Amikacin therapy. It presented a common problem in population analysis, 
permitting a useful comparison of the methods described here. The data set was also a 
reasonable one for understanding the IM rate of uptake of the drug somewhat better (although 
certainly not perfectly) than with other studies where it is usually given intravenously. This data 
set was obtained by one of us (DT) [22] from 17 adult patients with urinary tract infections who 
received intramuscular Amikacin, 1000 mg every 24 hours for 5 or 6 days. For each patient, two 
clusters of 4 (or sometimes 5) serum concentrations were measured, one cluster on the first day 
and the other on the 5th or 6th day, with serum samples taken at 1.0, 3.0, (sometimes at 5.0), 
and at 7.0 and 23.5 hours after the dose. Maximum measured serum concentrations ranged up 
to 48 ug/ml, usually at 1 hr after the dose, and trough concentrations were less than 2.0 ug/ml. 
Creatinine clearance (CCr) was estimated from data of age, gender, serum creatinine, height 
and weight [23]. Of the patients, 6 were male and 11 female, age ranged from 52 to 74 years, 
height ranged from 61 to 73 inches, weight ranged from 53 to 105 kg, and CCr ranged from 38 
to 87 ml/min/1,73M2. The patients were all clinically stable from day to day, and their renal 
function also was stable. All patients had eradication of the urinary pathogen after 3 days of 
their 5-6 day course of therapy, and no relapse seen with one year of follow-up. No 
nephrotoxicity or ototoxicity was seen. 
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 Initial parameter estimates for the IT2B analysis were set at (mean ±SD) 0.1 ± 0.1 hr-1 
for the elimination rate constant Kel, 25 ±  25 L for the apparent volume of distribution V,  and 
1.5 ± 1.5 hr-1 for the absorptive rate constant KA. Bioavailability of IM Amikacin was assumed to 
be 100%. 
 

Initial analyses with IT2B used a basic model with parameters KA, the absorptive rate 
constant, KE, the elimination rate constant, and total apparent volume of distribution V. 
However, the initial results showed strong correlations between V and the covariate body 
weight, and between KE and the covariate CCr. These results were also found with NPEM and 
NPAG. Because of this, the model was reparameterized as KS1, with respect to the covariate 
CCR, and VS1, with respect to the covariate body weight. Thus KE (hr-1) = KI (hr-1) + KS1 (hr-1 
per unit of CCr) x CCr (ml/min/1.73 M2) and V (L) = VS1(L/kg) x body weight (kg).  KI was held 
fixed at 0.0069325 (hr-1), appropriate to a half-time of 100 hrs in an anuric patient. 

 
 The same data of the 17 patients receiving intramuscular Amikacin were also analyzed 
using both the NPEM and the NPAG software [22]. As above, the parameters were KA, the 
absorptive rate constant from the intramuscular injection site, VS, the volume of distribution in 
L/kg, and KS, the increment of elimination rate constant per unit of creatinine clearance. Initial 
ranges for these parameters were set at 0 to 6.0 hr-1 for KA, 0 to 0.6 l/kg for VS, and 0.0000001 
to 0.008 hr-1 per unit of CCr for KS1. Gamma was set at 3.2158, the value previously obtained 
with the IT2B analysis. Again, KI was held fixed at 0.0069325 hr-1. 
 

4.1. THE AMIKACIN ASSAY 

 Amikacin concentrations in serum were assayed microbiologically within 48 h by an agar 
well diffusion method employing medium 1 according to USP XXI, using square plates (28 by 28 
cm) with 49 wells and Bacillus subtilis ATCC 3399. The agar was inoculated with a suspension 
adjusted by an optic standard to a density of approximately 109 CFU/ml. The final inoculum was 
2 x 107 CFU/ml. Each assay was performed in triplicate. In preliminary in vitro studies, antibiotic 
standards were prepared both in pH 7.4 buffer and in serum.  No difference in the sizes of 
zones of inhibition induced by a single antibiotic concentration was found between buffer and 
serum. The standards (ranging from 1 to 20 µg/ml in pH 7.4 buffer) and sera were assayed 
without dilution. The plates were read after incubation at 37 °C for 18 h. The detection limit of 
the microbiological method was 1 µg/ml and intra- and inter-day variations were below 5%. The 
explicit error polynomial of this assay was found to be 
 
 Assay SD = 0.12834 + 0.045645C,   (3)  
 
where C is the serum concentration.  
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4.2 METHODS: THE FIRST MONTE CARLO SIMULATION STUDY 

 Since it is not possible ever to know the parameter values exactly in clinical studies, a 
Monte Carlo simulation study was done in which each simulated subject’s parameter values 
were exactly known prior to the analysis. The initial objectives were to examine and compare 
the statistical consistency, efficiency, and asymptotic convergence rate of NPAG with that of 
IT2B (using the FOCE approximation), and also with a new parametric EM (PEM) method 
developed initially by Schumitzky [17,21], but now using the more recent Faure low discrepancy 
sequence integration method [2], which yields accurate computations of the required 
integrations [21].  
 
 A simulated population in which the parameter distributions were in fact truly Gaussian 
was studied. This favored the parametric population modeling program. A one-compartment, 
two-parameter model was used, with parameters apparent volume of distribution V and 
elimination rate constant K. The true mean V was 1.1, with standard deviation 0.25. The true 
mean K was 1.0, also with SD = 0.25. The true correlation coefficient between the two 
parameters was set at three different values in three different simulated scenarios: -0.6, 0.0, and 
+0.6. A single unit intravenous bolus dose was given to a simulated “average” patient at time 
zero, and a sparse data set of two simulated “measured” serum concentrations were used, an 
early one after the dose, somewhat similar to a “peak” sample, and a later sample similar to a 
“trough”, each with a 10 % coefficient of variation. Simulated populations ranging in size from 25 
to 800 subjects were studied. 
 
4.3  METHODS: THE SECOND MONTE CARLO STUDY, OF A NONGAUSSIAN 
DISTRIBUTION. 
 
 Another Monte Carlo simulation study [10] examined results from an NPEM analysis 
when the true simulated population parameter distribution was not Gaussian, but bimodal. 
Again, a 1 compartment model with parameters V and K was used, an intravenous bolus dose 
was given, and five simulated serum concentrations were obtained, each one obtained at 
approximately equal time intervals from early to late after the dose. In the population, V and K 
were assumed to be independent. V had a mean of 2.0, with SD 0.2. K, however,  was bimodal, 
a mixture of half slow eliminators with mean 0.5 with SD 0.05, and half fast eliminators with 
mean 1.5 with SD 0.15 units. The  bimodal (for K) population joint parameter density is shown in 
Figure 1, left.  Twenty simulated subjects were randomly sampled from the above population. 
Their empirical, exactly known parameter values are shown, smoothed, in Figure 1, right. The 
task of population modeling now is to discover this true sample joint parameter density. 
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Figure 1.  Left, smoothed true simulated population joint density of K and V.  The unimodal V is on the 
axis from the bottom corner to the left corner, and the bimodal K is on the axis from the bottom to the right 
corner. Right, the smoothed empirical density of 20 exactly known simulated subjects randomly sampled 
from the true density. 
 

5.0 RESULTS: CLINICAL DATA SET - THE PARAMETRIC IT2B ANALYSIS. 

The IT2B program converged on the 918th iteration. The mean values found for the 
population parameters KA, KS1, and VS1 were 1.349 hr

-1
, 0.00326 hr

-1
(per unit of CCr), and 

0.2579 L/kg respectively. The median values were 1.352 hr
-1
, 0.00327hr

-1
(per unit of CCr),  and 

0.2591 L/kg respectively. The population parameter standard deviations were 0.062 hr
-1
, 

0.000485 hr
-1
(per unit of CCr),  and 0.0350 L/kg respectively, yielding population parameter 

coefficients of variation of 4.55, 14.83, and 13.86 percent respectively. Gamma was found to be 
3.2158, showing that the SD of the environmental noise was probably about 3.2 times that of 
the assay SD, or conversely, that the assay SD was about 1/3 of the total of the assay and the 
environmental noise SD. 
 
 The individual subjects’ IT2B distributions of KA, KS1, and VS1 are shown in Figures 2 
through 4. While the distributions of KA and VS1 appeared to be fairly Gaussian, that of KS1 
was slightly skewed to the left. The joint IT2B distribution of KS1 and VS1 is shown in Figure 5, 
left, which shows an extremely high positive correlation between the two parameters, consistent 
with their estimated correlation coefficient of +0.991. The correlation coefficient between KA and 
KS1 (not shown) was similar, (+0.924), and that between KA and VS1 (not shown) was also 
very high (+0.950). These are probably spuriously high correlations found with IT2B, reflecting 
overparameterization of this problem for the IT2B method. Such very high correlations were not 
found with IT2B when gamma was held fixed at 1.0 and was not estimated.  
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Figure 2. Graph of the IT2B marginal frequency of population parameter KA. The plot is divided, for 
display purposes only, into 100 cells over the range from 1.19 to 1.47 hr-1 (horizontal axis). The frequency 
of the patient parameter values in each cell is shown on the vertical. See text for discussion. 
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Figure 3. Graph of the IT2B marginal frequency of population parameter KS1. The plot is divided, for 
display purposes only, into 100 cells over the range from 0.0019 to 0.0041 hr-1 per unit of creatinine 
clearance (horizontal axis). The frequency of the patient parameter values in each cell is shown on the 
vertical. See text for discussion. 
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Figure 4. Graph of the IT2B marginal frequency of population parameter VS1. The plot is divided, for 
display purposes only, into 100 cells over the range from 0.15 to 0.32 L/kg (horizontal axis). The 
frequency of the patient parameter values in each cell is shown on the vertical. See text for discussion. 
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Figure 5. Joint marginal density of KS1 and VS1 obtained with the FOCE IT2B, left, and with NPAG, right. 
Note the very high, and probably erroneous, correlation between the parameters seen with IT2B, and the 
much more realistic correlations seen with NPAG. NPEM results (not shown) were similar to NPAG. 
 

 Figures 6 and 7 are scattergrams of the IT2B estimated versus measured serum 
concentrations. Figure 6 shows the estimates based on the population parameter medians and 
the doses each subject received. In contrast, Figure 7 shows the estimates made using each 
subject's individual MAP Bayesian posterior parameter values (based on the population 
parameter medians and SD’s as the Bayesian prior) to predict only his/her own measured 
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serum concentrations. The improved estimates in Figure 7 are due to the removal of the 
population inter-individual variability, as perceived by the IT2B program. The remaining scatter 
is due to the intra-individual variability resulting from the assay error and the other sources of 
noise in the environment. The results, and the relatively low value of gamma (only 3.2), suggest 
that the clinical environment in the patients studied was probably managed with reasonable 
precision and care. 
 
 
      
 
 
 
 
 Figure 5. 
 
 
 

 
             
Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Scattergram of IT2B relationship between estimated serum concentrations (ug/ml, horizontal) 
and measured ones (vertical), based on median population parameter values. 
 



                                                                           A. BUSTAD et al 
 

 

18 

18 

 
 
Figure 7. Scattergram of IT2B relationship between estimated serum concentrations (ug/ml, horizontal) 
and measured ones (vertical), based on each subject’s own maximum aposteriori probability (MAP) 
Bayesian posterior parameter values, where each subject predicts only his/her own measured 
concentrations. 
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 The final exact log-likelihood (not just the FOCE approximation) can also be computed 
exactly by IT2B, if desired [1], This permits a direct comparison of the results of the exact 
likelihood values obtained with the three methods [1]. The exact final log-likelihood with IT2B 
was -389.548 (see Table I). 
 

             METHOD     
        IT2B  NPEM      NPAG 
Mean   
 KA        1.349  1.408       1.380 
 VS1          0.258  0.259                  0.258 
 KS1          0.003358             0.003371      0.003375 
Median/CV%    
 KA            1.352/4.55   1.363/20.42    1.333/21.24 
 VS1        0.2591/13.86           0.249/17.44    0.254/17.38 
 KS1    0.003273/14.83     0.003371/15.53     0.003283/15.76 
 
Log – Likelihood   -389.548             -374.790      -374.326 
 

Table I. Clinical Study Results. Parameter values (mean, median, percent coefficient of variation, CV%), 
and the exact final log likelihood obtained with the IT2B, the NPEM, and the NPAG programs. KA = 
absorptive rate constant (hr-1), VS1, apparent central volume of distribution (L/kg), KS1, increment of 
elimination rate constant (hr-1 per unit of creatinine clearance). CV% is less with IT2B, but so was the log 
likelihood, which was better (less negative here) with NPEM and NPAG. 
 
 
5.1 RESULTS: CLINICAL DATA SET - THE NONPARAMETRIC POPULATION 
 ANALYSES 
 
 The results are summarized in Table I, where they are also compared with the previous 
results from the IT2B program.  When comparing the results from IT2B, NPEM, and NPAG, at 
first glance there seems to be little difference between them. The mean and median parameter 
values were all quite similar. On closer inspection, though, the population interindividual 
parameter percent coefficients of variation (CV%) were always least with the IT2B program. 
This suggests that the population parameters were more narrowly distributed. However, the 
exact log-likelihood of the results was also clearly least with the IT2B parametric program [1], as 
shown in Table I. The log-likelihood was 14 logs greater with NPEM than with IT2B, and slightly 
greater still with NPAG. Similar differences in log-likelihood between a method using an 
approximate method to compute the likelihood versus one using an accurate one are also seen 
in Figure 19, further on, between the accurate parametric method PEM, and the approximate 
FOCE parametric method IT2B.  
 
 Since the likelihood was greater with the exact likelihood nonparametric methods, the 
smaller population parameter interindividual CV% values found with IT2B are probably due to its 
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constraining assumption that the population parameters must have Gaussian distributions, 
and/or due to the FOCE approximate calculation used by the IT2B method. 
 
 Both NPEM and NPAG found a more likely greater diversity in the population parameter 
distributions studied. The specific marginal distributions of KA, KS1 and VS1 obtained with 
NPAG are shown in Figures 8 through 10. They should be compared with Figures 2 through 4 
respectively, which were obtained with the IT2B program. Note that KS1 is skewed to the left. 
 

 
Figure 8. Graph of the NPAG marginal density of population parameter KA. The plot is divided, for display 
purposes only, into 100 cells over the range from 0.0 to 6.0 hr-1 (horizontal axis). The estimated 
probability of the parameter values in each cell is shown on the vertical. See text for discussion. 
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Figure 9. Graph of the NPAG marginal density of population parameter KS1. The plot is divided, for 
display purposes only, into 100 cells over the range from 0.0 to 0.008 hr-1 per unit of creatinine clearance 
(horizontal axis). The estimated probability of the parameter values in each cell is shown on the vertical. 
The distribution is more skewed to the left than that from IT2B, shown in Figure 3. See text for discussion. 
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Figure 10. Graph of the NPAG marginal density of population parameter VS1. The plot is divided, for 
display purposes only, into 100 cells over the range from 0.0 to 0.60 L/kg (horizontal axis). The estimated 
probability of the parameter values in each cell is shown on the vertical. See text for discussion. 
 
 An analysis of the scatterplots of estimated versus measured serum concentrations 
done by NPAG is shown in Figures 11 and 12, (and also those of the NPEM program, not 
shown), reveals that R2, the coefficient of the determination (the fraction of the variance 
explained by the regression relationship between the estimated and the measured data), was 
slightly greater with the exact likelihood nonparametric programs.  
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Figure 11. Scatterplot of predicted (horizontal) and measured (vertical) serum concentrations (ug/ml) 
based on the population median parameter values, obtained using the NPAG program. NPEM results (not 
shown) were similar to NPAG. 
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Figure 12. Scatterplot of predicted (horizontal) and measured (vertical) serum concentrations (ug/ml) 
based on the median parameter values of each subject’s Bayesian posterior joint probability density, 
predicting only that subject’s own data, using the NPAG program. NPEM results (not shown) were similar 
to NPAG. 
 
 As shown in Table II, the mean error was the least, and the mean squared error was 
also the least, with NPAG, showing that the scatterplots actually were somewhat more 
correlated, probably less biased, and more precisely estimated by the two nonparametric 
modeling methods. 

 
                  IT2B         NPEM          NPAG 
  R2 =          0.814          0.879           0.880 
  ME =       -0.575          -0.751           0.169 
  MSE =     48.69           29.01            29.70 

 
Table II. Clinical Study Results.  Analysis of estimated versus measured serum concentrations based on 
population median parameter values, using the IT2B, NPEM, and NPAG programs. R2: square of the 
correlation coefficient, ME: mean error, MSE: mean squared error. 
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5.2 RESULTS: THE FIRST MONTE CARLO SIMULATION STUDY 

 Figure 13 shows the exactly known parameter values of the 800 simulated subjects in 
the population studied (stars). As shown, this population was well resolved into 70 estimated 
support points (circles) by NPAG. The size of the circle represents the estimated probability of 
each support point. 

 
 

Figure 13. Plot of the 800 Monte Carlo simulated subjects (stars) whose parameter values (V, horizontal,  
and K, vertical) were exactly known prior to the analysis. The circles represent the 70 support points into 
which this population was resolved by the NPAG program.  Note that the means, standard deviations, 
and the correlation of V and K were well captured by the NPAG program. 
 

 Figure 14 shows that the accurate likelihood NPAG and PEM programs have consistent 
behavior. As the number of subjects  examined in the simulated population increased from 25 to 
800, the estimated mean apparent volume of distribution V approached closer and closer to the 
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true value, while the value estimated by the IT2B program with the FOCE approximation 
actually drifted visibly away from the true value as more subjects were studied. 

 

Figure 14. Consistency of estimators of the mean of V. The true mean of V is 1.1. NPAG and PEM (top 
and middle) are consistent. Their estimates approach the true value as more subjects are analyzed. 
FOCE IT2B (bottom) is not consistent. Results actually stray from the true values as more subjects are 
studied. 
 
 Figure 15 shows that the same was true for the mean elimination rate constant K. The 
estimates of K with NPAG and PEM approached the true value as the number of subjects in the 
population increased, while the IT2B FOCE estimates were again not consistent, and again 
drifted away from the true value as more subjects were studied.  
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Figure 15. Consistency of estimators of mean of K. True value of mean K is 1.0. NPAG and PEM (middle 
and bottom) are consistent. Again, the estimates approach the true value as more subjects are studied. 
FOCE IT2B (bottom) is not consistent. Results stray from the true values as more subjects are studied. 
 

 Figure 16 shows the same behavior for the estimates of the SD of K. NPAG and PEM 
had consistent behavior while the FOCE IT2B estimate again drifted away. Similar behavior was 
found for the estimation of the SD of V (not shown).  
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Figure 16. Consistency of estimators of SD of K. True SD is 0.25. NPAG and PEM (top and middle) are 
consistent. Results approach the true value as  more subjects are analyzed. FOCE IT2B (bottom) is not 
consistent. Results drift away at least 25% from the true value as more subjects are studied. 
 

 Figure 17 shows that the estimation of the correlation coefficient between V and K with 
NPAG and PEM was consistent, approaching the true value of 0.0 more and more closely as 
the number of subjects increased, while FOCE IT2B was severely biased, starting at about +0.5  
instead of the true value, and then increasing further up to about  +0.65. Similar quite biased 
and incorrect behavior (not shown) was also seen with the FOCE IT2B when the true simulated 
correlation coefficient was -0.6, and also when it was +0.6. Since gamma was not estimated 
here, the high correlations may have been due to the rather large assumed assay error of a 
10% CV. Both the results here and those described earlier when estimating gamma in the 
clinical data set with IT2B may have been due to the overall error model used, and (in the 
present Monte Carlo simulation) to the sparse data of only two samples per subject. Further 
study of this problem is warranted. 
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Figure 17. Consistency of estimators of correlation coefficient between V and K. The true value is 0.0. 
NPAG and PEM (middle and bottom) are consistent. FOCE IT2B (top) is not consistent, drifting away 
from the true value, and is severely biased. 
 
 Furthermore, with respect to asymptotic convergence, as shown in Figure 18, bottom, in 
order to decrease the estimated SD of a parameter by half, 4 times as many subjects were 
required by the accurate NPAG and PEM, consistent with asymptotic theory. In contrast, fully 16 
times as many subjects were required by the approximate FOCE IT2B program, top, to obtain 
the same reduction in SD. 
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Figure 18. Asymptotic convergence rate of IT2B (top)  is much less than that of NPAG and PEM 
(essentially superimposed at bottom). For NPAG and PEM, the estimated SD decreases by half as 4 
times the number of subjects are analyzed, as predicted by theory. For the FOCE IT2B, top, however, 
fully 16 times the number of subjects are required to decrease the estimated SD by half. 
 
 Figure 19 shows that the true log-likelihood increased monotonically with PEM, but not 
with IT2B, where the true likelihood reached an early high, and then decreased to a lower value. 
This difference in likelihoods is similar to that seen between NPAG and IT2B in the analysis of 
the clinical data set and shown in Table I. This behavior in likelihood is very similar to the 
behavior shown in Figures 14 through 17, in which the parameter values similarly reached 
somewhat of a “best point” with a few subjects, and then got worse as more subjects were 
studied. The behavior of the likelihood here and the parameter estimates in Figures 14-17 may 
well be related. 
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Figure 19.  As convergence proceeds, the true log-likelihood (vertical) increases monotonically with PEM 
(top), but with the FOCE IT2B approximation (bottom), the true likelihood reaches a high point and then 
decreases, while the FOCE approximation (not shown) is what actually increases monotonically with IT2B 
as the true log-likelihood drifts downward. 
 

 Figure 20 shows a frequency histogram comparing 50 NPAG estimated values of the 
variance of the estimated volume of distribution (V), at top, with 50 similar estimates made by 
the NONMEM program using the FO approximation, at bottom. This was done on a simulated 
population of 200 subjects, for 50 separate analyses. Very much greater precision in parameter 
estimation is seen with NPAG.  
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Figure 20. Distribution of 50 NPAG estimates of the variance of V (top) and of 50 NONMEM FO estimates 
(bottom). NPAG parameter estimates are much more precise.  
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 In summary, NPAG and PEM, which have exact or accurate computations, had 
consistent behavior, good efficiency with precise parameter estimates, and good asymptotic 
convergence. In contrast, the IT2B program, which used the FOCE approximation, was not 
consistent, with a small (1 – 2%) bias for the mean parameter values, a larger (20 – 30%) bias 
for the SD’s, and a severe bias for the correlation coefficients, as described above. Further, the 
NPAG and PEM programs had much better asymptotic convergence, close to theoretical. 
 

Especially disturbing in this study was the loss of statistical efficiency and precision of 
parameter estimation found with the FOCE approximation.  This simulation study was recently 
extended by one of us (RP) to include the FO and FOCE approximations specifically as 
implemented in the parametric population modeling program NONMEM, version V.1.1 [30], The 
first order approximation in NONMEM FO had biases as high as 50% in estimates of variances, 
and statistical efficiencies (for the estimation of the mean volume of distribution, for example, as 
shown here in Table III) less than 2% of those of the accurate PEM and NPAG methods for 800 
subjects, with a relative error over 100! NONMEM FOCE was a modest improvement over its 
IT2B FOCE counterpart. However, NONMEM FOCE still had significantly compromised 
statistical efficiency (29%, with relative error 3.45), less than half that of the accurate methods 
(61% for NPAG with relative error 1.63, and 75% for PEM, with relative error 1.33) as shown in 
Table III. When the parameter distribution is truly known to be Gaussian, the efficiency and 
relative error of PEM are somewhat better than with NPAG, as predicted by theory.  

 

 Estimator                           Relative efficiency   Relative error 

 DIRECT OBSERVATION           100.0 %   1.00 
 PEM     75.4%   1.33 
 NPAG      61.4%   1.63 
 NONMEM FOCE    29.0%   3.45 
 IT2B FOCE                    25.3%   3.95 
 NONMEM FO          0.9%          111.11 
 

Table III. Results of First Monte Carlo Simulation.  Comparison of the relative statistical efficiency 
and relative error in parameter estimation for the mean value of V, the apparent volume of distribution, of 
the PEM, NPAG, NONMEM FOCE, IT2B FOCE, and NONMEM FO population Modeling Methods. 
 
 The PEM results shown in Table III were recently confirmed in an independent blind 
comparison of ten Nonlinear Mixed Effects parametric population modeling methods conducted 
by INSERM [34]. The methods included the NONMEM FOCE, Splus FOCE, and SAS FO 
approximate algorithms as well as other 'accurate likelihood' methods based on either Monte 
Carlo or Gauss-Hermite numerical quadrature.  When analysing one hundred test problems 
generated by simulation from a one compartment first order absorption PK model with three 
random effects related to absorption, elimination, and volume of distribution,  PEM exhibited the 
least bias among all methods.  
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5.3  RESULTS: THE SECOND  MONTE CARLO SIMULAT ION STUDY 

 Since the differences between the accurate (PEM, NPEM, and NPAG) and the 
approximate (FOCE IT2B and NONMEM) methods were relatively small (in this example) with 
regard to the mean parameter values, although larger for the interindividual SD’s, and only 
grossly different for the correlations (see above), many workers have continued to use such 
approximate methods. However, when one encounters unsuspected non-Gaussian parameter 
distributions (difficult to see with parametric methods when having to assume various candidate 
multimodal distributions), things can be quite different. The results of the NPEM analysis of this 
Monte Carlo simulated bimodal population [10] gave the joint density shown in Figure 21, right. 
In the initial analysis, it easily discovered the two populations of simulated subjects without any 
further information, and was similar in shape to the empirical joint density shown in Figure 1, 
right. 
 

 

Figure 21. (Axes as in Figure 1). Left: the best parametric representation of the joint population density 
using the assumption of a joint Gaussian distribution, as might be seen with PEM, for example. The 
actual distribution cannot be seen at this initial step, as other information such as covariates or the 
collection of individual MAP Bayesian posterior values, for example, is required to suggest to the user to 
anticipate a bimodal, trimodal, or some other specifically assumed mixture distribution. The actual most 
likely distribution may well not be seen, because of the assumptions made about the shape of the mixture 
distribution. Right, smoothed results from NPEM. The actual bimodal distribution is easily recognized by 
NPEM at this initial step, without any further information. See text for discussion. 
 
 In contrast, Figure 21, left, shows a joint unimodal Gaussian distribution having the same 
true means and covariances as that of the original population shown in Figure 1. It is similar to 
what would be obtained by PEM, and more accurate than what would be obtained by IT2B or 
NONMEM, if V and K had been assumed to be unimodal, which is why it was used for this 
comparison. This result gives a totally different and incorrect perception of the true density 
shown in Figure 1. These results illustrate the difficulties encountered using parametric 
modeling approaches when the parameter distributions are not truly Gaussian, and one has no 
other advance information such as covariates or the collection of MAP Bayesian posterior 
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parameter values, for example, to permit one to assume a bimodal, trimodal, or some other 
mixture distribution, which will still always be constrained by the specific parametric 
assumptions used. 
 
6. DISCUSSION:  

 The IT2B method of population modeling is based on the widely used strategy of MAP 
Bayesian individualization of pharmacokinetic models [12]. Like any parametric method, it 
perceives population parameter distributions only in terms of single point estimates of its means, 
modes, medians, variances, and correlations, and it computes the conditional likelihoods only in 
an approximate (FOCE) way. 
 
 A significant weakness of many, but not all, current parametric maximum likelihood 
methods is that they usually have lacked the desirable property of statistical consistency. With 
the parametric methods using the FO and FOCE approximations of the likelihoods, as shown 
earlier, there is no guarantee that the greater the number of subjects studied in a population, the 
closer the results obtained will actually approach more closely to the true parameter values. 
However, as shown here, the newer parametric PEM method using the Faure low discrepancy 
integration method, was in fact consistent, efficient, and had good convergence properties. 
When the parameter distributions were truly Gaussian, as in the first Monte Carlo simulation, 
PEM was also the most efficient and precise, as predicted by theory. That new method, though, 
was not available to analyze the clinical data set. 
 
 Parametric methods make parametric assumptions about the shape of the parameter 
distributions. Even when multimodal assumptions are used, they usually do not take into 
account the actual most likely shape of the distributions, as the nonparametric methods can do. 
Further, they give only single point summary parameter estimates such as the mean, median, or 
mode, and the variances and covariances of each of the overall parameter distributions, and not 
the full distributions themselves. In contrast, the nonparametric methods clearly, and without 
any other information, can detect any number of totally unanticipated subpopulations of patients, 
such as those with unusually large clearances of caffeine, for example, who may have altered 
CYP1A2 activity [32]. 
 

In addition, when one uses a parametric population model as the Bayesian prior to 
develop an initial drug dosage regimen for a patient to achieve a desired target goal at a desired 
target time, the MAP Bayesian regimen is based only on the point estimates of the central 
tendency (usually the mean or median) of each parameter distribution, and is then simply 
assumed to hit the desired target exactly. With such approaches, it is not possible to estimate in 
advance the degree to which the regimen may fail to hit the target, as there is only one single 
model, with each parameter consisting of only a single point summary estimate. The full shape 
of the parameter distribution, with its recognized or unrecognized subpopulations and outliers, is 
not considered. Such action (the dosage regimen) therefore cannot be specifically designed to 
achieve target goal(s) optimally, with maximal precision. When the distribution is a mixture of 



                                                                           A. BUSTAD et al 
 

 

36 

36 

Gaussians, there is also a difficult problem ensuring that the regimen chosen is truly the most 
precise in hitting the desired target goals. 

 
 In summary, PEM, NPEM, and NPAG, which have exact or accurate computations, have 
consistent behavior, good statistical efficiency and precise parameter estimation, and good 
asymptotic convergence. In contrast, the IT2B program, which uses the FOCE approximation, 
suffered a loss of consistency, with a small (1 – 2%) bias for the mean parameter values, a 
moderate (20 – 30%) bias for the SD’s, and severe bias for the correlation coefficients. The 
NONMEM program also, with the FOCE approximation, suffered in precision of its parameter 
estimates. NONMEM FO suffered severely. The NPAG program was statistically quite efficient, 
much more so than the FOCE NONMEM or IT2B, and had much better asymptotic 
convergence, close to theoretical [2].  
 
 A weakness of nonparametric approaches is that there is currently no method to obtain 
confidence limits for these oddly shaped nonparametric parameter distributions. To get 
confidence intervals for the entire nonparametric parameter distributions, one must use much 
more computationally intensive methods such as profile likelihood or bootstrap methods to 
obtain them. Work to implement these approaches is in progress. 
 
6. CONCLUSIONS 
 
 Population modeling approaches which compute the likelihood function and/or 
conditional likelihoods exactly or accurately have the desirable properties of statistical 
consistency, good statistical efficiency (precise parameter estimates), and good asymptotic 
convergence [2,21]. This is true of the nonparametric NPEM and NPAG programs, and also of 
the PEM parametric approach. Most currently available parametric methods such as IT2B and 
NONMEM, however, do not have these desirable proven properties [2-4], as the computations 
are done only as an FO or FOCE approximation.  
 
 A significant clinical benefit of the NP population modeling approaches is that the 
multiple support points, with their multiple sets of parameter values, provide multiple predictions 
of future serum concentrations and other responses from any given future dosage regimen, 
compared to only one from a parametric model. Because of this, the NP models provide a tool 
to circumvent the problems presented by the separation principle [24] and can not only calculate 
and but also can specifically optimize in advance the precision with which any dosage regimen 
is predicted to hit a desired target goal at a desired time. Nonparametric population models thus 
permit “multiple model” design of dosage regimens to optimize a specific performance criterion 
[25-29], such as minimizing a weighted least-squares criterion in achieving a desired clinically 
selected target goal, thus performing an optimized clinical simulated trial with each dosage 
regimen developed. It is useful to consider all the above information when selecting software for 
population PK/PD modeling. 
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 The following approach currently appears to be useful. It seems good, first, to carefully 
determine the assay error polynomial. Then, a parametric method such as IT2B can be useful to 
help to estimate and explore the probable ranges of the population parameter values. Gamma 
can be computed either here of with the NPAG program. Then the NPAG program can be used 
to get the final definitive entire parameter distributions. These can then be used with multiple 
model dosage design [26-29] for optimal clinical planning, monitoring, and adjustment of a 
patient’s drug regimen. 
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